Respuesta :

The radius of the circle is [tex] r=9.06\;cm [/tex] and the length of the chord is [tex] L=12.7\;cm [/tex]. The angle subtended by the chord CD at the center of the circle is

[tex] \theta =2\sin ^{-1}(\frac{12.7/2}{9.06} )=1.553 \;rad[/tex].

Therefore, the measure of arc CD is

[tex] arc(CD)=r\theta=9.06*1.553=14.1 \;cm [/tex]