Respuesta :
Assuming you are looking for the acceleration a:
1.[tex]m_1a = T_1 -m_1g [/tex]
2.[tex]m_2a = m_2g - T_2[/tex]
where T is the tension and a is the acceleration of the blocks. The acceleration of the two blocks and the acceleration of the pulley must be equal.
The torque on the pulley is given by:
3.[tex]\tau = \overrightarrow r \times \overrightarrow F = (T_2 - T_1)R = I\alpha = \frac{1}{2} MR^2 \frac{a}{R} [/tex]
where [tex]I = \frac{1}{2} mR^2[/tex] and [tex]a = \alpha R[/tex].
Combining the three equations:
[tex]T_2 - T_1 = \frac{1}{2} Ma \\ m_2g - m_2a -m_1g - m_1a = (m_2-m_1)g - (m_1 + m_2)a = \frac{1}2}Ma \\ \\ a = \frac{(m_2 - m_1)g}{m_1 + m_2 + \frac{1}{2}M } [/tex]
1.[tex]m_1a = T_1 -m_1g [/tex]
2.[tex]m_2a = m_2g - T_2[/tex]
where T is the tension and a is the acceleration of the blocks. The acceleration of the two blocks and the acceleration of the pulley must be equal.
The torque on the pulley is given by:
3.[tex]\tau = \overrightarrow r \times \overrightarrow F = (T_2 - T_1)R = I\alpha = \frac{1}{2} MR^2 \frac{a}{R} [/tex]
where [tex]I = \frac{1}{2} mR^2[/tex] and [tex]a = \alpha R[/tex].
Combining the three equations:
[tex]T_2 - T_1 = \frac{1}{2} Ma \\ m_2g - m_2a -m_1g - m_1a = (m_2-m_1)g - (m_1 + m_2)a = \frac{1}2}Ma \\ \\ a = \frac{(m_2 - m_1)g}{m_1 + m_2 + \frac{1}{2}M } [/tex]